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Introduction

Bayesian approach to Interpreting Archaeological Data

The statistical modelling within the Bayesian framework is widely used by
archaeologists :

I 1988 Naylor , J . C. and Smith, A. F. M.
I 1990 Buck C.E.
I 1994 Christen, J. A.
I etc

Examples

I Bayesian interpretation of 14C results , calibration of radiocarbon results.
I Constructing a calibration curve. e.g. the 14C curve
I Bayesian models for relative archaeological chronology building.
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Introduction

A first example : calibration of radiocarbon
I The laboratory gives an 14C age with an uncertainty A± σ
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Introduction

A first example : calibration of radiocarbon
I The laboratory gives an 14C age with an uncertainty A± σ
I Result of the Bayesian modelling
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Introduction

The context
Data
I Each dating method provides a measurement M ± σ, which may

represent :
I a 14C age,
I a paleodose measurement in TL/OSL,
I an inclination, a declination or an intensity of the geomagnetic field

I We collect a set of data.

Determination of the dates
Assume that for each measurement M we have

M = g(θ) + ε

where
I θ is the calendar time to be calculated
I ε represents the measurement error
I g is a calibration function which relates the measurement to θ
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Introduction

Archaeological information

After the archaeological excavations, prior information is available on the
dates.

Examples :

I Dated archaeological artefacts are contemporary
I Stratigraphic Information which induces an order on the dates.
I the differences between two dates is known (possibly with an

uncertainty).
I Terminus Post Quem/ Terminus Ante Quem
I etc
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Introduction

Bayesian statistics

I Observations M1 ± σ1,M2 ± σ2, ....MN ± σN

I θ is the unknown date. We build a prior
distribution on θ : π(θ)

Example

I Mi : 14C ages
done on artefact.

I θ : calendar date
of artefact

Bayes Formula
The posterior distribution :

π(θ|M1, ...Mn) ∝ f (M1, ...Mn|θ)× π(θ)
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Introduction

Example

I Data : n measurements M1, ...,Mn provided by different laboratories

Mi = g(θ) + εi
iid∼ N

(
θ, s2)

I Prior information on the unknown date θ :

θ belongs to [Tstart;Tend]

We translate this information as follows :

θ ∼ Uniform [Tstart;Tend]

Choice of the bounds Tstart and Tend ?
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Introduction

The number of measurement increases and
[Tstart;Tend] = [−500, 0]
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Introduction

One measurement and
[Tstart;Tend] = [−300− T;−300 + T]
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Introduction

wrong prior information [Tstart;Tend] = [−330;−310] and
the number of measurement increases
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Introduction

Bayesian inference

From the posterior distribution, we calculate
I Confidence region :

Credible interval HPD region

P(θ ∈ IC or HPD |M1, ...Mn) = 1− α

I Pointwise Estimates of the parameter theta :
I Mean of the posterior distribution
I Mode of the posterior distribution
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Introduction

Softwares

1. BCal is an on-line Bayesian radiocarbon calibration tool.
Buck C.E., Christen J.A. and James G.N. (1999). BCal an online Bayesian radiocarbon
calibration tool. Internet Archaeology, 7

2. Oxcal provides radiocarbon calibration and analysis of archaeological
and environmental chronological information.
Bronk Ramsey, C. (1995). Radiocarbon calibration and analysis of stratigraphy The OxCal
program. Radiocarbon, 37(2), 425-430.

3. Chronomodel
Lanos, A. Philippe (2017) Hierarchical Bayesian modeling for combining Dates in
archaeological context. Journal de la SFdS, Vol. 158 (2) pp 72-88.

Lanos and Philippe (2019) Event date model a robust Bayesian tool for chronology building.
Communications for Statistical Applications and Methods
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Introduction

R software

1. ArchaeoPhases Post-Processing of the Markov Chain Simulated by
’ChronoModel’, ’Oxcal’ or ’BCal’
A. Philippe, M.-A. Vibet. (2017) Analysis of archaeological phases using the CRAN package
ArchaeoPhases

2. BayLum. Chronological Bayesian Models Integrating Optically Stimulated
Luminescence and Radiocarbon Age Dating
B. Combes, A. Philippe. Bayesian analysis of individual and systematic multiplicative errors
for estimating ages with stratigraphic constraints in optically stimulated luminescence
dating. Quaternary Geochronology 39, 2017.

A. Philippe, G. Guerin S. Kreutzer, BayLum an R package for Bayesian Analysis of OSL
Ages & Chronological Modelling (LED2017)

3. ArchaeoChron Bayesian Modeling of Archaeological Chronologies
4. Luminescence Comprehensive Luminescence Dating Data Analysis
5. rbacon age-modelling ; Bchron Radiocarbon Dating, Age-Depth

Modelling
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Calibration dating measurements

calibration curves
1. In radiocarbon :

the curve IntCal14 is used to
convert an age measurement
into calendar date for
continental origin samples.

2. In archaeomagnetism (AM),
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Calibration dating measurements

calibration curves

1. In radiocarbon :
2. In archaeomagnetism (AM),

the curve of secular variation of the
geomagnetic field established for a
given region are used to convert a
measurement of inclination,
declination or intensity into calendar
dates.
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Calibration dating measurements

Individual calibration
1. We observe M (14C, AM, TL/OSL measurement)

M = m + ε

where ε is the error of measurement. We assume ε ∼ N (0, s2) where s is
known.

2. Calibration : convert m→ calendar date θ, the parameter of interest

m = g(θ) + σg(θ)ε
′

where both functions g and σg are supposed known
and where ε′ represent the error on the calibration curve

3. Prior distribution on the parameter θ : Uniform distribution on T the study
period.

Posterior distribution :

p(θ|M) ∝ 1
S
exp

(
−1
2S2 (M − g(θ))2

)
1T(θ)

where
S2 = s2 + σ2

g(θ)
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Calibration dating measurements

Radiocarbon

Converting a sample age 14C (= 1000 ± 30) in calendar date through the
curve of Calibration IntCal13.

A. Philippe Bayesian 19 / 61



Calibration dating measurements

Archaeomagnetic calibration

Converting an inclinaison measurement (Incl = 65± 1 ) in calendar date via
the calibration curve in France (Paris) over the last two millennia.
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Calibration dating measurements

Archaeomagnetic calibration

Converting an declinaison measurement (dec = 29 with Incl = 65± 1 ) in
calendar date via the calibration curve in France (Paris) over the last two
millennia.
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Calibration dating measurements

Estimation of the date by two dating methods
(Inclinaison / Declinaison)

How to combine the information coming from both dating methods to
improve the accuracy of the estimated date?
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Event model : a robust way to combine measurements

Definition of the target Event

Definition

I we choose a group of dated events that are related the target event.
 Characterize the date of a target event from the combination of the dates

of contemporaneous dates.

The objective is to estimate the calendar date of the "target event"
we denote θ the date of interest
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Event model : a robust way to combine measurements

The example of Lezoux

Medieval kiln of the potter’s workshop in
Lezoux (Auvergne, France)1

Aim : Dating the last firing of the kiln

1 Menessier-Jouannet et al. 1995
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Event model : a robust way to combine measurements

Lezoux - cont.

• Target event the date of the last firing (θ).

This is any date between 0 and 2 000

• dated events :

I baked clays dated by
AM > Estimation of the last time the
temperature exceeded a critical point
TL > Estimation of the last firing

I bones
14C > Estimation of the death of the
animal

• All these dated event are
contemporaneous of the target event
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Event model : a robust way to combine measurements

Volcanic eruptions

I Target Event : Eruptive period with flow deposits
I Dated events : organic samples found in a flow deposit are dated by 14C.
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Event model : a robust way to combine measurements

Definition of the Event Model
Lanos & Anne Philippe (2017,2018+)

1. We want to estimate θ. the date of the target event.

2. The target event is defined by
I n measurements : M1, ...,Mn
I For each i = 1, ..., n the measurement Mi is done on material whose

calendar date ti is unknown.

3. The prior information is
the date of the target event belongs to T = [Tb;Te]

 we choose T = [Tb;Te] as study period .
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Event model : a robust way to combine measurements

The statistical model
The model is

Mi =gi(ti) + εi

ti =θ + λi

θ ∼ Uniform (T)

Assumptions on εi :
εi represents the experimental and calibration error εi ∼ind N (0, s2

i + σg(ti))

Assumptions on λi :
λi represents the difference between the date of artifacts ti and the target
event θ This error is external to the laboratory.

λi ∼ind N (0, σ2
i )

 σi is the central parameter to ensure the robustness
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Event model : a robust way to combine measurements

Numerical result for Lezoux example.

I Measurements
T1 : (AM) Inclination : I = 69.2, alpha = 1.2
T2 : (AM) Declination : I = 69.2, alpha = 1.2, D= -2.8
T3 : (TL) age 1170 +/- 140 years - Reference year : 1990
T4 : (TL) age 1280 +/- 170 years - Reference year : 1990
T5 : (14C) age 1370 +/- 50 BP

I Prior information We assume that the study period is [ 0 ; 2 000 ]
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Event model : a robust way to combine measurements

Marginal posterior density of the Event

The segment above the curve represents the smallest credible interval.
The HPD region is presented by the colored area under the curve.
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Event model : a robust way to combine measurements

Error between the target event θ and dated events ti.
I To test the assumption of comtemporaneity,

we analyze the distribution of σi

I Individual standard deviations σi :

θ = ti ± σi

Lezoux example : all densities are concentrated on small values

small means the same order of magnitude as the errors of measurement

 no outlier
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Event model : a robust way to combine measurements

one pyroclastic flow
I Target event : eruption [θ]
I 5 organic samples found in flow deposit are dated by 14C [t1, ..., , t5]
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Event model : a robust way to combine measurements

A second pyroclastic flow containing an outlier.

I the posterior density of date of the target Event remains almost
insensitive to the outlier.

I We do not have to choose specific tools for rejecting outlying data.
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Chronological model

We consider Bayesian tools for constructing chronological scenarios.

Main idea of the model implemented in Chronemodel

1. we define target event as a group of
contemporaneous dated events.

2. We construct a chronology (= collection of dates)
of target events taking into account temporal
relationship between the dates of target events

Alternative : model implemented in Oxcal

I We construct a chronology of dates of target
events
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Chronological model

Volcanic eruptions

I Target Event : Eruptive period with
flow deposits

I Dated artefacts : organic samples
found in a flow deposit are dated
by 14C.

I Prior information Stratigraphic
constraint on deposits

Restrictions
I Each event contains at least one

measurrement.
I Each measurement is associated to

one (and only one) target event.
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Chronological model

Chronologies of K target events
I We want to estimate θ1, ...θK the calendar dates of target events.

Prior information on the dates of the target event

1. The stratigraphic constraints.

 a partial order on (θ1, ...θK) := ϑ ⊂ TK

2. Duration information :

maxj∈J θj −minj∈J θj ≤ τ where τ is known

3. Hiatus information :

J1, J2 two groups, minj∈J2 θj −maxj∈J1 θj ≥ γ
where γ is known

A. Philippe Bayesian 38 / 61



Chronological model

Chronology of Volcanic eruptions

6 pyroclastic flows from volcano dated by 14C 6 ordered target events
S = {ϑ : θ1 ≤ ... ≤ θ6}
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Chronological model

Maya city with information on occupation time

Prior information on the archaeological phase :

The occupation time issmaller than 50 years.
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Chronological model

Effect of information on precision

without information

event interval length
θ1 1284 - 1506 222
θ2 1253- 1502 249
θ3 1213- 1469 256
θ4 1230- 1497 267
θ5 1192- 1469 277

Information on the duration

event interval length
θ1 1309 - 1433 124
θ2 1308-1430 122
θ3 1299 - 1423 124
θ4 1305 - 1429 124
θ5 1297 - 1425 128
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Post processing of the Baysian chronomogical model
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Post processing of the Baysian chronomogical model

Statistical analysis of the chronology

Examples

1. Characterisation of a group of dates [ begin / end /duration/ period ]
2. Testing the presence of hiatus between two dates or two groups of dates.
3. Construction of tempo plot to evaluate the repartition in time

The R package ArcheoPhase : contains Statistical Tools for analysis
the chronological modelling
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Post processing of the Baysian chronomogical model

Phases : definition
A phase is a group of dates defined on the basis of objective criteria
such as archaeological, geological or environmental criteria.

The collection of dates is estimated from a chronological model.
[Chronomodel / Oxcal ... ]

Phase = {θj, j ∈ J ⊂ {1, ...,K}}
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Post processing of the Baysian chronomogical model

Estimation of the phase
Phase1 = {θj, j ∈ J ⊂ {1, ...,K}} .

1. posterior distribution of the minimum
α = minj∈J θj

 Estimation of the beginning

2. posterior distribution of maximum
β = maxj∈J θj  Estimation of the end

3. Phase time range The shortest interval that covers all the dates θj

included in the phase at level 95%
i.e. the shortest interval [a, b] ⊂ T such that

P(for all j θj ∈ [a, b]|M1, ...,Mn) = P(a ≤ α ≤ β ≤ b|M1, ...,Mn) = 95%
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Post processing of the Baysian chronomogical model

Application to Volcanic eruptions [cont]

P1 = {θ1, θ2, θ3}, · · · · · ·

P4 = {θ10, θ11, θ12, θ13}
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Post processing of the Baysian chronomogical model

Hiatus

Detection of a hiatus between two phases θj, j ∈ J1 and θj, j ∈ J2

1. β1 = maxj∈J1 θj and α2 = minj∈J2 θj

2. Can we find [c, d] such that

P(β1 < c < d < α2|M1, ...,Mn) = 95%?
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Post processing of the Baysian chronomogical model

Application cont.
Detection of hiatus :

I A hiatus is detected between Phases 2 & 3.
Estimation of the interval [170, 235]

I there is no gap between 1 & 2 and 3 & 4

To summarise
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Post processing of the Baysian chronomogical model

The chronology of Canímar Abajo in Cuba
(Rocksandic et al. 2015 Philippe & Vibet (2018) RadioCarbon.
The site has evidence for two episodes of burial activity separated by a shell
midden layer.

I 12 AMS radiocarbon dates
(human bones collagen and a
charcoal) obtained from burial
contexts

I 7 from the Older Cemetery
(OC),

I 5 from the Younger Cemetery
(YC))

The aim : Bayesian model based on these 12 AMS radiocarbon dates in
order to draw conclusions about
I the time of both mortuary activities
I the hiatus between them
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Post processing of the Baysian chronomogical model

The chronology

Estimation of the dates t

From the estimation of the sequence of
dates t1, ..., t12 (using Bayesian model)
we estimate
I the beginning and the end of the

Older Cemetery
I the beginning and the end of the

Younger Cemetery
I the gap between these two periods.
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Post processing of the Baysian chronomogical model

Chronology of the activities in the site of Canimar
Abajo.
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Post processing of the Baysian chronomogical model

Estimation of the gap
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Post processing of the Baysian chronomogical model

Testing the hypothesis "a date belongs to a time
interval"

I We fix a time interval [a, b].
I we want to test if the estimated date τ1 belongs to this interval.

I In a Bayesian context, this consists in calculating the posterior
probability :

P(a < τ1 < b|M)

I This probability gives the credibility of the hypothesis "the date τ1 belongs
to [a, b]”.
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Post processing of the Baysian chronomogical model

Application.

We apply the testing procedure to allocate the 8 conventional radiocarbon
dates to the most credible period among the five periods : before OC, OC,
Midden period, YC and after YC.

Remark
We did not use these dates to construct the chronology of the site

Conventional Sampling Stratigraphic Before OC OC Midden YC After YC
radiocarbon dates level layer
UNAM.0714a 0.2 m 2 / YC 0 0 0 0 100
UNAM.0717 0.4 m 3 / midden 0 0 100 0 0
UNAM.0716 0.45 m 3 / midden 100 0 0 0 0
UNAM.0715 0.6-0.7 m 3 / midden 100 0 0 0 0
A.14315 0.9-1.0 m 3 / midden 0 0 100 0 0
UBAR.170 1.6-1.7 m 4 / OC 100 0 0 0 0
A.14316 1.8-1.9 m 4 / OC 0 100 0 0 0
UBAR.171 1.8-1.9 m 4 / OC 100 0 0 0 0

Sampling information and posterior probability for the the 8 conventional radiocarbon
dates to belong to the periods of the chronology. Results are in %.

A. Philippe Bayesian 54 / 61



Post processing of the Baysian chronomogical model

Tempo plot ( see Dye 2016 and Philippe & Vibet 2017)

A statistical graphic designed for the study of rhythms.

I The tempo plot measures change over time :
I For each date t, we estimate the number of events N(t) which occurs

before the date t, we have

N(t) =
n∑

i=1

I]−∞,t](τi)

I Interpretation : the slope of the plot directly reflects the pace of change :
I a period of rapid change yields a steep slope
I a period of slow change yields a gentle slope.
I When there is no change, the plot is horizontal.

A. Philippe Bayesian 55 / 61



Post processing of the Baysian chronomogical model

Application : Evaluation of the activity of volcano
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Post processing of the Baysian chronomogical model

Age-depth model

Additinal information : the depth of the dated event.
1. We estimate the relation between the dates t and the depth h

f (t) = h age-depth curve

2. We estimate f taking into
I all the posterior information on the sequence of dates estimated by the

Bayesin chronological model
I Non parametric regression method is applied on the output of the MCMC

algorithm.

3. From the estimated curve, we predict the date as function of the depth.
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Post processing of the Baysian chronomogical model

Stratigraphy and radiocarbon ages of the lake
sediments.

I Information on the date of events :
temporal order coming from the stratigraphy.

I Result of the Bayesian modeling
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Post processing of the Baysian chronomogical model

Estimation of Age -depth curve
To estimate this curve we use

1. estimated ages by the chronological model
2. the depth of the dated samples
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Post processing of the Baysian chronomogical model

Forecasting
We want to predict the age of a sample that would be collected at a
selected depth h
Method

1. The estimation is based on the estimated age-depth curve
2. We take into account the uncertainty on the estimated curve
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Post processing of the Baysian chronomogical model

See more

my homepage :

https://www.math.sciences.univ-nantes.fr/~philippe

1. References
2. Articles
3. R packages
4. Software informations

contact : anne.philippe@univ-nantes.fr
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